
Cascor comparison using a student-teacher task

A systematic comparison of flat and standard

Cascade-Correlation using a student-teacher network

approximation task

FREDERIC DANDURAND
*
†, VINCENT BERTHIAUME†, THOMAS R. SHULTZ†

† McGill University, Department of Psychology, 1205 Dr. Penfield Ave., Montréal,

Québec, H3A 1B1, Canada

Cascade-correlation (cascor) networks grow by recruiting hidden units to adjust

their computational power to the task being learned. The standard cascor

algorithm recruits each hidden unit on a new layer, creating deep networks. In

contrast, the flat cascor variant adds all recruited hidden units on a single hidden

layer. Student-teacher network approximation tasks were used to investigate the

ability of flat and standard cascor networks to learn the input-output mapping of

other, randomly initialized flat and standard cascor networks. For low-

complexity approximation tasks, there was no significant performance

difference between flat and standard student networks. Contrary to the common

belief that standard cascor does not generalize well due to cascading weights

creating deep networks, we found that both standard and flat cascor generalized

well on problems of varying complexity. On high-complexity tasks, flat cascor

networks had fewer connection weights and learned with less computational

cost than standard networks did.

Keywords: Neural network architectures, cascade-correlation, network depth,

connectivity, function approximation

AMS Subject Classification: 62M45, 92B20

1 Introduction

Backpropagation is a popular neural network algorithm, and a standard to which other

learning techniques are often compared. The number and arrangement of hidden units

and hidden layers in backpropagation networks is generally set by the network designer

based on domain-specific expertise or heuristic rules (e.g. see Rafiq et al., 2001).

By contrast, in constructive algorithms, hidden unit topology is determined

automatically as part of the learning process. Constructive networks can be initialised

without any hidden units and they accumulate hidden units until they have enough

computational power to solve the target task.

*
 Contact email: fdandu@ego.psych.mcgill.ca (Frederic Dandurand)

Cascor comparison using a student-teacher task

Several constructive neural networks techniques have been proposed. Cascade-

Correlation (cascor) (Fahlman and Lebiere 1990) is a general purpose constructive

technique capable of learning both classification and continuous function

approximation tasks.

In this paper, we address a common criticism of standard cascor: a poor ability to

generalize due to its tendency to build deep networks of many hidden layers. We

compare generalization of standard cascor with another variant of cascor that builds

shallow, one-hidden-layer networks. This question is important because neural network

architectures are often evaluated and compared based primarily on their ability to

generalize.

In contrast to cascor, most other constructive neural network algorithms (e.g. Extentron

(Baffes and Zell 1992), Upstart (Frean 1990), Tiling (Mezard and Nadal 1989), Divide

& Conquer (Romaniuk and Hall 1993), and Pyramid (Parekh et al. 2000)) are limited to

classification tasks because their learning relies on the partitioning of training patterns

as correctly and incorrectly classified, or on the positioning of hyperplanes to divide the

input space into discrete regions. Consequently, these algorithms generally build neural

networks composed exclusively of discontinuous, binary threshold units.

Classification can be considered as a special case of function approximation where

outputs are binary or m-ary. In contrast to binary classifications, function

approximation can be more complex when the quality of the fit is assessed using a

continuous (real-valued) error function requiring finer discriminations. To our

knowledge, the only important constructive neural network algorithm besides cascor

capable of learning function approximation tasks is Constraint Based Decomposition

(CBD) (Draghici 1996, 2001). When used for function approximation, this algorithm

first converts the original task where targets are real-valued into a simpler, discrete

classification problem using the sign of those patterns. For example, if the original

problem has targets -2.5, 1.3, -0.5, the discrete classification problem would be -1, +1, -

1. This classification problem is learned using the standard CBD algorithm, and the

resulting network (topology and weights) is used to initialize a standard

backpropagation neural network to be trained on the original (function approximation)

task. Although interesting, CBD appears less cognitively and biologically plausible

than cascor because of the additional complexity and processing required to implement

the discrete classification task, and because there is no psychological or neurological

evidence for a mechanism to switch between classification and function approximation

tasks.

1.1 Cognitive modelling

Constructive neural network algorithms are interesting for modelling psychological

processes because they are naturally able to model learning and cognitive development

in a single unified system (Shultz 2003). Cascor has been successfully applied to the

modelling of many cognitive developmental tasks such as the integration of distance,

time, and velocity concepts (Buckingham and Shultz 2000), the balance-scale problem

(Shultz et al. 1994) and personal pronouns (Takane et al. 1995). Cascor has several

Cascor comparison using a student-teacher task

advantages in modelling cognition. For one thing, there is neuroscience evidence for

network growth through neuro- and synapto-genesis under the control of learning

(Shultz et al. 2007). Also, the Knowledge-Based Cascade-Correlation (KBCC) variant

of the algorithm (Shultz and Rivest 2001) can model how relevant prior knowledge can

be recruited to facilitate the learning of a new task, a phenomenon that is very common

in human learning (Wisniewski 1995).

1.2 The cascor algorithm

The cascor algorithm begins with a simple network topology consisting of input and

output units only, and recruits hidden units to provide the network with additional

computational power for learning. Units (typically with sigmoid transfer functions) are

recruited from a pool of candidates. Learning in cascor proceeds in an alternation of

two phases:

 In input phase, input weights of all candidates units in the pool are trained to

maximize the covariance (S) between their outputs (V) and the residual error

(E):

o p

oopp EEVVS))((,

where o is the network output and p is the training pattern. V and oE represent

the mean values of V and E over all patterns. The candidate unit with the highest

covariance is then inserted into the network at the end of an input phase.

 In output phase, all the weights connected to the output layer are trained to

minimize residual network error.

In input and output phases, learning is done using an algorithm for training feed-

forward networks, such as QuickProp (Fahlman 1988). Changes of phase occur when

covariance maximization or error reduction stagnates in the current phase.

In its original, standard form described by Fahlman and Lebiere (1990), the cascor

algorithm cascades all recruited hidden units. That is, in addition to being fed by input

units, hidden units are fed by all previously recruited hidden units. As a result, cascor

inserts each new unit into a new layer, creating deep networks with as many hidden

layers as recruited units.

By contrast, the flat variant of cascor, described by Sjogaard (1991), adds new recruited

units onto a single layer (i.e. cascaded connections are eliminated), thus limiting the

depth of the network. Except for this difference in hidden unit connectivity, flat and

standard cascor are identical.

1.3 Generalization in cascor networks

Generalization in cascor networks is sometimes cited as problematic, but the literature

on cascor generalization provides contradictory results. In psychology simulations,

cascor appears to generalize better than backprop. Shultz (2006) compared

Cascor comparison using a student-teacher task

backpropagation and cascor on ability to learn and cover several cognitive-

developmental phenomena. Cascor was consistently superior, but the limitations of

backpropagation were not restricted to generalization problems. Sometimes

backpropagation failed to learn, and other times it failed to cover developmental stages

seen in children.

On the other hand, Adams and Waugh (1995) reported that, in a Gaussian-function

approximation problem, cascor produced an uneven stairlike output function exhibiting

poor generalization compared to a flat backpropagation network. The constructive

nature of cascor may cause sigmoid units to saturate, as Adams and Waugh observed:

„the steepness of the steps reflects the fact that many of the sigmoids in the net are

being driven hard on or hard off‟ (p. 945). Possibly this is caused by the fact that

learning in output phase continues until output error stagnates, at which point the

learning algorithm switches to input phase to recruit a new hidden unit. Output error

stagnation usually happens after sigmoids saturate. Furthermore, the cascor learning

algorithm freezes input weights of recruited units, which keeps them saturated. This

allows cascor to build powerful feature detectors, but also tends to generate highly

nonlinear outputs. As a possible solution to problems with sigmoid units in cascor,

Hwang et al. (1996) proposed trainable nonlinear nodal activation functions. Such

saturation effects are not unique to cascor; they are potentially present in any neural

network using sigmoid units, including standard backpropagation networks.

Excessive network depth due to hidden-unit cascading is also considered detrimental to

generalization (Prechelt 1997). Deep cascading in standard cascor has been criticized

for biasing cascor towards nonlinearity (Prechelt 1997) and for harming the learning of

more linear problems (Sjogaard 1991). A variety of techniques restrict the number of

connection weights, for example, pruning (Hansen and Pedersen 1994), restricting fan-

in (Phatak and Koren 1994, Klagges and Soegtrop 1992) and limiting cascaded

connections between layers (Waugh and Adams 1994). These techniques can each help

to limit network depth.

Sjogaard (1991) proposed a modification in cascor connectivity, called flat cascor, to

restrict network depth to a single hidden layer. He found that the flat variant of cascor

generalized better than standard cascor on the single artificial problem he tested.

Prechelt (1997) compared, among other things, standard cascor with a version of flat

cascor that uses error minimisation for recruiting hidden units on his PROBEN1 test

bed. He measured generalization ability and number of recruited units and found that,

in most cases, there was no significant difference between the two algorithms. In the

cases where there were differences in generalization, „not cascading hidden units is

superior to cascading them on some problems and inferior on others; the former case

occurred more often‟ (Prechelt 1997; p. 895). Littman and Ritter (1993) found that, on a

task consisting of time series prediction based on the Mackey-Glass differential

equation, deeply cascaded network architectures
†
 tend to overfit small data sets less

than shallow, broad architectures (i.e. flat cascor) containing the same number of nodes.

†
 The deeply cascaded architectures used by Littman and Ritter (1993) are not strictly speaking standard

cascor because they allow multiple units per hidden layer, but they are nonetheless deep.

Cascor comparison using a student-teacher task

In short, deciding whether or not to cascade hidden units is not straightforward.

Whether standard (deep) cascor networks are better or worse than flat cascor networks

is controversial and may well depend on the particular task being learned. Furthermore,

performance on small collections of problems may not be representative of overall

performance, meaning that further experimentation is required before a conclusion can

be reached.

1.4 A novel approach to studying cascading hidden units in cascor

Because previous research, with its variable and inconsistent results, may be limited to

the particularities of the specific problems investigated, our work introduces a problem-

neutral empirical approach for evaluating the effect of cascading hidden units. Our

method is based on having networks learn the input/output functions of other cascor

networks, also known as the student-teacher task (Saad 1999). More specifically,

standard and flat cascor networks were trained to approximate the output of either

standard or flat, randomly-initialized cascor networks. Our goal was to determine

whether flat or standard cascor networks make a better function approximator on a task

where the biases are known and strictly controlled. The characteristic difference

between standard and flat cascor networks is the respective presence vs. absence of

connection weights between hidden units.

The following terms are used throughout the article:

1. Network‟s I/O function: Function implemented by a neural network that maps

its inputs onto its outputs. The complexity of this function is related to the

number of hidden units in the network, to network connectivity and to the

magnitudes and signs of connection weights.

2. Teacher network: a cascor network (standard or flat) that is used to generate

training and test patterns. It is initialized with a predetermined number of hidden

units, and random connection weights. It is not trained on any task; instead its

network I/O function depends only on those random weight values. Teacher

networks‟ role is limited to providing a random input/output function on which

student networks will be trained.

3. Student network: a cascor network (standard or flat) that learns the training set

produced by the teacher network, using the cascor training algorithm. In other

words, student networks‟ I/O functions are trained to approximate I/O functions

of teacher networks.

Student-teacher tasks have been used for studying various characteristics of neural

networks, including overfitting (Amari et al. 1997, Lawrence et al. 1997), the

probability distribution of performance parameters (Lawrence et al. 1997), and learning

algorithms (Park et al. 2004).

In our context, the student-teacher method affords a direct comparison of the functional

mappings (inputs onto outputs) that the two architectures are capable of representing.

Unlike real-world problems with unknown biases, biases here are known and

controlled. The I/O functions produced by standard teachers are known to be more non-

Cascor comparison using a student-teacher task

linear than those produced by flat teachers. This method also allows systematic

exploration of large areas of problem space because weights are randomly initialized

and the complexity of the network‟s I/O function is varied by manipulating the number

of hidden units in the teacher network. We compare standard and flat cascor networks

to investigate the impact of cascading weights on different performance measures, at

different complexity levels. Are cascades detrimental to generalization? In other words,

do flat cascor networks generalize better than standard networks? Also, are there

differences between the two architectures in terms of size and training efficiency?

2 Experimental design

This section introduces experimental design parameters. This experiment uses a three-

way one-repeated-measure design with two independent factors (teacher-network type

with 2 levels (flat and standard) and teacher hidden count , ht, with 10 levels (2, 4, 6, 8,

10, 12, 14, 16, 18 and 20)) and one repeated factor (student-network type with 2 levels

(flat and standard)). This design affords all combinations of teacher and student types

(flat-flat, standard-flat, flat-standard and standard-standard) at different levels of

complexity.

A relatively large number (six) of performance measures of student networks are

recorded:

 Network size after training

o Number of recruited hidden units

o Number of weights

 Training effort

o Number of training epochs

o Computational cost for training

 Approximation quality

o Error on train set (accuracy)

o Error on test set (generalization)

In this experiment teacher networks are constructed (as opposed to being trained) with a

given number of hidden units and a given connectivity (flat or standard). Network

connections are initialized with random weights. Teacher networks had no direct input-

output connections: input activations had to pass through hidden units to get to the

outputs. This maximized the difference between flat and standard teachers because their

characteristic difference lies in the way hidden units are connected. To explore large

portions of the possible I/O function space, and to provide sufficient power for

statistical analyses, experimental conditions were repeated 20 times with different

teacher random weights for each combination of teacher network type (flat or standard)

and number of hidden units ht.

2.1 Teacher I/O function complexity

The number of hidden units in the teacher network, ht, influences task complexity. Fig.

1 shows examples of low (2 hidden units) and high (20 hidden units) complexity

network I/O functions generated using 2 inputs and 1 output. Compressed file size can

Cascor comparison using a student-teacher task

be used as a measure of objective information content (Donderi 2006; Donderi and

McFadden 2005). Mean file size (N=20 networks per condition) is presented in Fig. 2

as a function of number of hidden units. Images were compressed using Portable

Network Graphics (PNG), an open, lossless image compression format similar to JPEG.

Insert fig.1 about here

We performed a 2 by 2 ANOVA to examine the effects on file size of teacher type (2

levels: standard and flat cascor) and of the number of hidden units in the teachers, ht, (2

levels: 2 and 20 hidden units). We found three significant effects. First, file size

increases with the number of hidden units ht (F(1,396) = 743, p < 0.001), indicating that

the more hidden units, the more information content, and thus greater complexity.

Second, we found a main effect of teacher type (F(1,396) = 28, p < 0.001), indicating

that standard teachers generated larger files, and therefore more complexity, than flat

teachers. Finally, we found an interaction between teacher and ht (F(1,396) = 37, p <

0.001) suggesting that standard teachers are more complex than flat teachers only when

the teacher network has many hidden units.

Insert fig.2 about here

2.2 Number of connection weights and computational cost

Table 1 shows how the number of connection weights is calculated for each student

network.

Insert table 1 about here

Computational cost measures the number of weight adjustments required for training

the network, as shown in Table 2. To compute this value, as training alternates between

input and output phases (beginning in output phase), the sum of number of weights to

train is multiplied by the number of epochs in each specific phase.

Insert table 2 about here

2.3 Task parameters

In contrast to most real-world tasks where the problem determines certain neural

network parameters such as number of inputs and outputs, student-teacher tasks have

Cascor comparison using a student-teacher task

several free parameters. In this section, these parameters are explained and their

settings are justified. The task parameters included number of inputs and outputs, levels

of the ht factor, the limit on the number of hidden units in the student (hs max), the

number of training patterns, and the range over which random connection weights in

teacher networks vary.

2.3.1 Inputs and outputs

We used continuous coding for input values. We selected an input range of [-1,1]

because it is representative of typical encodings. Our choice of number of inputs was

the result of a compromise between choosing a realistic value (i.e. representative of

real-world problems) and limiting the number of inputs to minimize computational

cost. In Prechelt‟s (1997) real-world benchmarks, where a mixture of binary and

continuous inputs are used for each function approximation problem, the mean number

of continuous inputs is 5 (min=0, max=14) and the mean number of total inputs is 27

(min=8, max=125). We chose 6 continuous inputs as a compromise value. A single

continuous output with an asigmoid activation function (range 0 to 1) was used to allow

visualization of training data using gray scale coding (see Fig. 1).

2.3.2 Number of hidden units in teacher networks (ht) and maximum number

of recruitments in student networks (hs max)

In order to study the effect of complexity, the range of [2,20] was chosen for the

number of hidden units in the teacher network (ht). This range yields a wide coverage

of problem complexity while being compatible with real-world tasks, as the average

number of hidden units recruited for learning tasks in the PROBEN1 problem set was 8

(Prechelt 1997).

Because task difficulty can vary depending on teacher networks‟ random initialization,

we expected a large variance in the number of student network recruits. To limit

computational cost, we imposed a ceiling (called hs max) on the maximum number of

hidden units student networks are allowed to recruit. We empirically determined that a

maximum of 10 times the number of hidden units in the teacher network (ht) was a

suitable value for hs max. The argument is twofold. First, as explained in section 2.3.3,

the number of training patterns must exceed the number of connections in the student

network. To establish a fixed upper bound on the number of training patterns, we need

to impose a limit on the maximum number of hidden units in student networks. Second,

if students did not learn the task with ten times more hidden units than ht, they may be

stuck in local error minima perhaps due to unfavourable initial conditions. Thus, we

specify that student networks can recruit at most 200 units, occurring when the teacher

network contains 20 hidden units.

2.3.3 Number of training patterns

With this artificial task, we can generate as much data as we like, i.e. we can use the

teacher network to produce any number of training patterns. If we select too few

training patterns, there is a risk of overfitting. Indeed, if student networks have too

many connections for a given training set size, they may have enough computational

power to rote-memorize training patterns. Such overfitting usually results in poor

Cascor comparison using a student-teacher task

generalisation. A common guideline to prevent overfitting is to make sure there are

more training patterns than there are connections to train.

Consistent with this guideline, we selected a number of training patterns equal to the

maximum possible number of connections in a student network. As seen in section

2.3.2, the maximum number of hidden units in student networks is 200. Thus, the

maximum number of connections in a student network with 6 inputs is 21507 (see

Table 1). Our legacy code represented the input space as a square grid, so it was

convenient to use a squared integer to compute sample size. The closest squared integer

was 147. Thus, we used 21609, the square of 147, as training and testing set sizes in all

simulations.

2.3.4 Connection weight range

We determined the range over which random connection weights in the teacher

network would vary. In general, the complexity (or difficulty) of the task increases with

weight range because output units saturate when the weighted sum of their inputs is

large. We empirically selected a weight range of [-1,1] to make the number of recruits

in the student network to be approximately equal to the number of hidden units in the

teacher network (i.e. ht ≈ hs).

2.3.5 Summary of simulation parameters

Table 3 summarizes simulation parameters used for student networks, both standard

and flat.

Insert table 3 about here

2.4 Learning parameters

We trained student networks using QuickProp (Fahlman 1988). Table 4 summarizes the

learning parameters used for student networks. Except for score threshold, we used the

default learning parameter settings of Fahlman‟s original LISP implementation of

cascor. No weight change is allowed to be greater in magnitude than maximum growth

factor times the previous step for that weight (Fahlman 1988). Cascor changes phase if

error reduction (or correlation increase) has been lower than change threshold across

patience epochs (Fahlman 1990). Cascor will also switch phase after having reached

max epochs in the current phase. Decay is used to keep weights from growing too big.

The learning rate controls the amount of gradient descent used in updating weights.

See Fahlman (1990) and his LISP code in the CMU AI repository for additional details

of learning parameters.

Score threshold controls how close network output values must be to target values for

learning to be successful. In output phase, training finishes when, for all outputs oi,j and

targets ti,j, | oi,j – ti,j | < score threshold. Fahlman‟s default value for score threshold is

0.4. For target values in a range of [0,1], such a score threshold can be suitable for

binary classification tasks, but not for function approximation because it allows for a

Cascor comparison using a student-teacher task

tolerance on approximation error of 80% (+/- 0.4 on a range of [0,1]). Here, we

selected a score threshold of 0.05 to be within 10% (i.e. +/- 0.05) of target values.

Insert table 4 about here

3 Results

Using a General Linear Model (GLM), we performed univariate tests to investigate

which independent factors had significant influences on the dependent measures. We

further analysed significant interactions using simple main effects tests. This section

presents the important and statistically significant results.

To improve normality, we performed all our analyses with log-transformed data.

However, for ease of interpretation, all reported means and SDs and Figs. 5 to 8 use

untransformed data. Consequently, error bars in these figures are not indicative of

statistical significance. Table 5 summarizes results of the univariate GLM analyses.

Insert table 5 about here

3.1 Number of recruited hidden units

The number of hidden units is a measure of student network size. Results are presented

in Fig. 3 for standard teachers and Fig. 4 for flat teachers. As noted in Table 5, for this

dependent measure we found significant main effects of ht and teacher type, and a

significant interaction between student and teacher.

Insert fig. 3 about here

Insert fig. 4 about here

First, the main effect of the number of hidden units in teacher networks (ht) reflects that

student networks recruited about 50 times more hidden units with complex tasks (i.e.

teacher I/O functions generated with ht = 20 hidden units) than with simple tasks (ht = 2

hidden units). At ht = 20 they recruited a mean of 15.6 (SD=18.3) units, and at ht = 2,

student networks recruited a mean of 0.3 (SD=0.7) units.

Second, the significant main effect of teacher type reflects that student networks

recruited about twice as many hidden units to learn standard-teacher tasks (M=7.0,

Cascor comparison using a student-teacher task

SD=15.2) than flat-teacher tasks (M=3.6, SD=8.6). This is further evidence that

standard-teacher tasks are more complex than flat-teacher tasks.

Finally, the significant interaction between teacher and student types suggests that,

although students did not require significantly different numbers of recruits with flat

teachers (flat student: M=3.4, SD=7.8; standard student: M=3.8, SD=9.3; difference not

significant at p=0.344), standard students recruited fewer units than flat students with

standard teachers (standard students: M=5.7, SD=10.7; flat students M=8.4, SD=18.6,

difference significant at p=0.012). In short, with standard teachers, standard students

recruited fewer units than did flat students.

3.2 Number of connection weights

Number of connection weights is another measure of network size. Results on number

of weights are presented in Fig. 5 for standard teachers and Fig. 6 for flat teachers. As

noted in Table 5, there were significant main effects of student type, ht and teacher

type, and a significant interaction between student and ht.

Insert fig. 5 about here

Insert fig. 6 about here

First, the main effect of student type reflects that standard students built networks with

about twice as many connection weights (M=104, SD=281) as flat students (M=54,

SD=116).

Second, the main effect of the number of hidden units in teacher networks (ht) reflects

that complex tasks (ht = 20) required about 25 times more connections (M=251,

SD=413) than simple tasks (for ht = 2, M=9.4, SD=5.8 connections).

Third, the main effect of teacher type reflects that student networks had about 1.6 times

more connections when learning a standard-teacher task (M=98, SD=227) than a flat-

teacher task (M=60, SD=204).

Finally, the ht x student interaction reflects that student networks did not differ for

simple tasks (for ht = 2, flat students M=9.4, SD=6.8; standard students M=9.5,

SD=4.7; p=0.8), but that standard students had more connections (M=363, SD=542)

than flat students (M=138, SD=160; significant difference at p<0.001) when task

complexity was high (ht = 20).

In short, an analysis of number of connection weights in student networks suggests that

student networks did not differ in size for simple tasks, but that flat networks were

smaller when learning complex tasks. Furthermore, those results support our hypothesis

Cascor comparison using a student-teacher task

that task complexity increases with the number of hidden units in the teacher (ht), and

that standard-teacher tasks are more complex than flat tasks.

3.3 Number of epochs

The number of total epochs to train is a measure of training effort. Results are presented

in Fig. 7 for standard teachers and Fig. 8 for flat teachers. As noted in Table 5, we

found significant main effects of ht and teacher type, and a significant interaction

between student and teacher.

Insert fig. 7 about here

Insert fig. 8 about here

First, the main effect of number of hidden units in the teacher (ht) reflects the fact that

student networks took about 25 times longer to learn complex teacher functions

(M=640, SD=786 epochs for ht = 20) than simpler functions (M=24, SD=50 epochs for

ht = 2).

Second, the main effect of teacher type reflects that students needed about 1.8 times

more epochs to learn standard-teacher functions (M=287, SD=570) than flat-teacher

functions (M=162, SD=388).

Finally, the interaction between student and teacher types reflects that flat students took

fewer epochs to learn the flat-teacher functions (M=133, SD=261) than standard

students (M=191, SD=482; difference significant at p=0.01), but that standard and flat

students did not differ (p=0.8) in the number of epochs needed to learn standard-teacher

functions (standard students: M=274, SD=523; flat students: M=300, SD=615).

In short, students took more epochs to learn more complex tasks and complexity

increased with standard teachers and the number of hidden units in the teacher network.

Also, flat students learned flat-teacher tasks faster than standard students did, while flat

and standard students learned standard-teacher tasks at similar speeds.

3.4 Computational cost for training

Computational cost is another measure of training effort. As noted in Table 5, there

were significant main effects of student type, ht and teacher type. Figs. 9 and 10 present

results of computational training cost for standard and flat teacher networks

respectively.

Cascor comparison using a student-teacher task

Insert fig. 9 about here

Insert fig. 10 about here

First, the main effect of student reflects the fact that flat students trained about 1.5 times

more efficiently (M=7735, SD=26229) than standard students (M=11616, SD=32423).

The size and direction of this main effect are similar to that of student type on number

of connection weights, suggesting those additional computations are used to train the

extra cascaded weights in standard students,.

Second, the main effect of ht reflects that complex teacher tasks (M=30188, SD=49511

for ht = 20) took about 50 times more computation to train than simpler teacher tasks

(M=627, SD=1467 for ht = 2).

Finally, the main effect of teacher type reflects that standard-teacher functions took

about twice as much computation to learn (M=12631, SD=34012) than flat-teacher

functions (M=versus 6720, SD=23927).

3.5 Student network error

Fig. 11 and Fig. 12 present results of error on test set (generalization) for standard and

flat teacher networks respectively. As was seen in Table 5, we found no significant

main or interaction effects on accuracy (error on train set) or generalization (error on

test set). Accuracy and generalization graphs were very similar, thus for conciseness,

only generalization graphs are displayed here.

The similarity between accuracy and generalization suggests two things. First, flat and

standard cascor networks generalised well because network error was not larger on

unseen (test) data than on data used for training. Second, the density of training data

was probably high enough to get a good function approximation in all regions of the

problem space.

Insert fig. 11 about here

Insert fig. 12 about here

Cascor comparison using a student-teacher task

4 Discussion

Our results suggest that:

1. Both flat and standard networks were able to learn and generalise well on functions

generated by either standard or flat teacher networks.

2. There were no differences between standard and flat cascor in generalization and

accuracy at any level of complexity studied.

3. When the task was simple
‡
 (for teacher networks of fewer than about 14 hidden

units), there were no performance differences between flat and standard student

networks.

4. When there were student differences on training effort, flat networks trained more

efficiently than standard networks. First, flat students trained with less

computational cost than standard students. Second, flat students learned flat tasks,

but not standard tasks, in fewer epochs than standard students did.

5. When there were student differences on network size, flat students required fewer

connections than standard students did. Furthermore, standard students recruited

fewer units than flat students, but only when learning standard teacher tasks.

6. Task complexity, which depends on teacher networks‟ I/O functions, was larger for

standard networks than for flat networks having the same numbers of hidden units,

as shown by larger compressed file size. Standard teacher networks may have been

able to build more complex I/O functions due to the cascaded connection weights

between hidden layers. This was reflected in our results showing that student

networks took more computation to train and built larger networks when learning

standard teacher functions than flat teacher functions.

7. Task complexity also increased with the number of hidden units in the teacher

network. Again, this was reflected in our results showing that student networks took

more computation to train and built larger networks when learning teacher functions

of more hidden units (ht).

Our research examined a comprehensive set of six dependent measures. In contrast,

other researchers employed fewer measures. For instance, Sjogaard (1991) considered a

set of five measures similar to ours but without the computational cost of training.

Adams and Waugh (1995), Littmann and Ritter (1993), and Lahnajarvi et al.(2002) all

employed four measures, and finally Prechelt (1997) focused on two measures only,

generalization ability and number of recruited units.

4.1 Generalization

The answer to our main experimental question is therefore that both flat and standard

cascor generalise well on problems with wide ranges of complexity. This may help to

settle a controversy in the literature on cascor. Previous research did not find a

conclusive answer about generalization abilities of flat and standard cascor. Prechelt

(1997) studied many variants of cascor. His flat variant of cascor was trained in input

phase using error minimization and not covariance maximization, so a direct

‡
 Figure 1 presents examples of data sets generated by low and high complexity networks.

Cascor comparison using a student-teacher task

comparison with our results is difficult. In general, he found no differences in

generalization on most of the real-life problems in the PROBEN1 test bed between the

cascor variants he studied, which included differences in unit cascading (network

connectivity). Furthermore, he found that when there were differences, the architecture

that performed better depended on the problem.

Although they did not use strictly flat cascor, the results of Phatak and Koren (1994)

suggest that limiting network depth may improve generalization, but they note that no

conclusion can be drawn based on their analysis.

Other work supports contradictory conclusions: that flat cascor generalizes better than

standard cascor (Sjogaard 1991) or that standard cascor generalizes better than flat

cascor (Littman and Ritter 1993). Our experiment shows that generalization differences

between flat and standard cascor may not exist with tasks that control bias. When such

differences are found in real-world problems, they may be due to unknown

particularities of the problems used that may favour one topology over another.

Our findings differ from those of Adams and Waugh (1995). On a simple and smooth

one-dimensional function approximation problem (1 / (1+x
2
)), they found that cascor

generalized poorly because sigmoids in the network tended to saturate, thus producing

uneven stairlike outputs. In contrast, our protocol reduces this problem by using cascor

networks to generate training data, yielding problems whose level and type of

nonlinearity are more compatible with cascor networks. Besides being six-dimensional,

our networks‟ I/O functions are much more complex than the one used by Adams and

Waugh, especially when the number of hidden units in the teacher network is large.

4.2 Network size and training effort

In this work, we also considered network size and training effort. We only found

differences when task complexity was very high, higher than would normally be found

in real-world problems (e.g. Prechelt 1994).

When task complexity was high, flat networks trained more efficiently than standard

students did, using fewer epochs on flat-teacher tasks, and with about 1.5 times less

computational cost on both standard and flat tasks. For network size, standard cascor

recruited fewer hidden units than flat cascor on standard teacher problems, but flat

networks generally had about half as many connection weights as standard networks

had. In sum, flat cascor may learn more efficiently because there are fewer connections

to train. We further discuss implications of cascaded weights in section 4.4.

In Prechelt‟s (1997) work, the average number of recruits for regression (i.e. function

approximation) problems was 8 (min=0, max=92), which corresponds to problems of

low complexity in our task. Some of the PROBEN1 tasks were actually linearly

separable, something that cascor can readily detect by not needing any recruits. We

found no differences in student network size and training efficiency when task

complexity was that low. This is compatible with Prechelt‟s results on PROBEN1 real-

world problems where he found no performance difference on most of these tasks.

Cascor comparison using a student-teacher task

Furthermore, Prechelt used a non-standard threshold (alpha value) for detecting

statistical significance. While we used α = 0.05 (and Bonferonni adjusted alpha levels

when appropriate), Prechelt used a more liberal value of 0.1, so more results could turn

out significant in his study simply due to random effects. In fact, some of his results are

contradictory: different architectures perform significantly better on the same task

depending on the version used, i.e. how data were split into train and test sets. Such

contradictions suggest those results could be false positives. Therefore, we can suspect

that there might be even fewer actual (practical) differences between variants of cascor

on real-world problems than what Prechelt reported.

Other factors may also interact with network topology to determine cascor

performance. For example, Phatak and Koren‟s (1994) results suggest an interaction

between connectivity and sample size: standard cascor may construct smaller networks

that train faster than networks of restricted depth when there are many training patterns

compared to the number of inputs and outputs. However, restricting cascor depth may

result in an overall better performance when less data are available for a given number

of inputs and outputs. Unfortunately, none of those differences were tested for

statistical significance, so their conclusions are uncertain. Furthermore, because small

and large sample size data were drawn from different problems, problem characteristics

may be confounded with sample size.

Our simulations, based on very large sample sizes, may support a conclusion opposite

to Phatak and Koren‟s (1994) because flat cascor built networks with fewer connection

weights that trained with less computational cost. With its strictly controlled bias and

uniform tasks across conditions, our teacher-student method could be used to

systematically investigate other issues, such as whether cascor connectivity interacts

with the amount of training data.

In short, the choice of cascor architecture might have little importance for many real-

world problems (see section 4.4 for discussion on the usefulness of cascading weights).

However, by contrast with many real-world problems, our artificial task is complex

enough to discriminate subtle architectural effects on performance.

4.3 Differences with real-world problems

In what ways does our student-teacher approximation task differ from real-world

problems? First, as argued in the previous section, real-world problems tend to be

simple and even sometimes linearly separable whereas the complexity of our task was

manipulated from simple (compatible with real-world problems) to much more

complex.

Second, we were able to generate as much data as we needed because this is an

artificial task. In contrast, real-world problems often have much less data because such

data can be costly or difficult to obtain.

Cascor comparison using a student-teacher task

Third, we argued that if neural networks have more connections to train than there are

training patterns available, they may be too powerful and overfit data. Consequently,

neural networks trained on real-world tasks may generalize more poorly than neural

networks trained on our problem because real-world problems often have little data

available.

Fourth, as described earlier, biases in our tasks are systematically controlled. Target

values exactly represent the underlying process to approximate. In contrast, real-world

data can suffer from unknown biases, have measurement errors, and other sources of

noise.

Finally, although our problem used 6 inputs, which is typical of many real-world tasks,

some real-world problems have more inputs.

4.4 Why use cascading weights?

Our results raise questions about the utility of cascading weights, especially because we

found no difference in generalization between standard and flat students. At lower,

similar to real-life problem complexities, using cascaded weights did not do any harm

in our experiments but neither did it provide any apparent benefit.

At higher task complexity, our results suggest that cascading weights may result in

larger networks that train less efficiently. Compared to flat student networks, standard

networks have extra connections, in the form of cascaded weights between hidden

units. If these extra, cascaded weights do some useful work, standard networks may

well require fewer recruits than do flat networks as, for example, on the standard-

teacher tasks used here. However, some of those extra, cascaded weights seem not to be

useful, resulting in fewer connection weights for flat networks than standard networks.

Also, the extra connections in standard student networks increase training effort.

Perhaps cascaded weights are more useful on problems in which later, more subtle

representations can build on earlier and simpler representations. It is possible that the

random functions generated by our teacher networks did not have this characteristic.

Baluja and Fahlman (1994) proposed an elegant solution to the problem of having to

choose whether or not to cascade weights. In their extension to cascor called

Sibling/Descendant Cascade-Correlation (SDCC), the learning algorithm is modified so

that the pool of recruits contains both units to be installed on the current top-most

hidden layer (sibling units) and units to be installed on a new hidden layer (descendant

units). This solves the problem of network depth by allowing sibling and descendant

units to directly compete during each recruitment. Standard and flat cascor network

architectures can be seen as two limit cases on a continuum of cascor architectures

where the number of hidden units per hidden layer varies. In standard cascor, each unit

is installed on a different layer, whereas in flat cascor all units are installed onto a

single layer. Optimal solutions for specific tasks might require varying ratios of hidden

units per hidden layers, so in most cases, the SDCC algorithm can be expected to

recruit a mixture of unit types. SDCC also might be a more biologically plausible

Cascor comparison using a student-teacher task

model than flat or standard cascor. Indeed, its ability to generate networks of moderate

depth might be better suited to modelling the limited layers of human cortex.

As noted, Phatak and Koren (1994) proposed another method for limiting network

depth, without completely flattening the network. The caveat of their method is that the

number of hidden units per hidden layer has to be manually determined. Unfortunately,

this undermines cascor‟s ability to automatically create network topology, and

reintroduces designer expertise and trial-and-error experimentation into the process of

network design.

We suggest that further research is necessary to determine the utility of cascading

weights in cascor networks. In this paper, we investigated two extreme connection

schemes, one fully cascaded (standard) and another completely flat. Further research

could explore more flexible connectivity schemes such as SDCC. In addition, pruning

algorithms (e.g. Thivierge et al. 2003) could be used to remove surplus cascading

weights, and result in size and training performances closer to that of flat cascor, while

keeping the benefits of useful cascading weights in building powerful, cascaded feature

detectors.

4.5 Other follow-up experiments

Another possible follow-up experiment would be to compare cascor with

backpropagation neural network architectures. Getting a meaningful comparison with

backpropagation is not straightforward because backpropagation architectures are

designed by the experimenter, and therefore there are potentially unlimited numbers of

architectures to compare with. A careful and systematic approach would be necessary

to study performance comparison. Based on psychology simulations in which standard

cascor or SDCC is compared to backpropagation on the same phenomena (Shultz

2006), we expect that cascor would learn and generalize better than backpropagation.

We found that the student-teacher task technique was powerful for comparing two

variants of cascor. We believe this approach could be similarly useful for comparing

machine learning algorithms and techniques, with bias and complexity controlled and

large areas of problem space explored.

In conclusion, the choice of standard or flat cascor does not seem to be crucial in

practice because differences in network size and cost emerge only for high complexity

tasks. Our results contradict the common criticism that standard cascor does not

generalize well – we found no generalisation differences due to cascading weights at

any level of complexity.

5 Acknowledgements

We thank Geoffrey Hinton for providing some seminal ideas for this project, and for his

feedback and comments. We also thank François Rivest for ideas and technical advice,

Yoshio Takane for help with statistical analyses, and Kristin Laurin for proofreading an

earlier version of this document. The research was supported by a McGill Major

Cascor comparison using a student-teacher task

scholarship to F. D. and a grant to T. R. S. from the Natural Sciences and Engineering

Research Council of Canada.

6 References

A. Adams and S. Waugh, “Function evaluation and the cascade-correlation

architecture”, in The IEEE International Conference on Neural Networks, 1995,

pp. 942-946.

S. Amari, N. Murata, K. R. Muller, M. Finke and H. H. Yang, “Asymptotic statistical

theory of overtraining and cross-validation”, IEEE Transactions on Neural

Networks, 8(5), pp. 985-996, 1997.

P. T. Baffes and J. M. Zell, “Growing layers of perceptrons: Introducing the extentron

algorithm”, Proceeding of the International Joint Conference on Neural

Networks 2, 1992, pp. 392-397.

S. Baluja and S. E. Fahlman, “Reducing network depth in the cascade-correlation”,

Technical report CMU-CS-94-209, Pittsburgh, Carnegie Mellon University,

1994.

D. Buckingham and T. R. Shultz, “The developmental course of distance, time, and

velocity concepts: A generative connectionist model”, Journal of Cognition and

Development, 1, pp. 305-345, 2000.

D. C. Donderi, “An information theory analysis of visual complexity and dissimilarity”,

Perception, 35(6), pp. 823-835, 2006.

D. C. Donderi and S. McFadden, “Compressed file length predicts search time and

errors on visual displays”, Displays, 26, pp. 71-78, 2005.

S. Draghici, “Improving the speed of some constructive algorithms by using a locking

detection mechanism”, Neural Network World, 6(4), pp. 563-575, 1996.

S. Draghici, “The constraint based decomposition (CBD) training architecture”, Neural

Networks, 14, pp. 527-550, 2001.

S. E. Fahlman, “Faster-learning variations on back-propagation: An empirical study”,

in Proceedings of the 1988 Connectionist Models Summer School. T. J.

Sejnowski, G. E. Hinton and D. S. Touretzky, Ed., San Mateo, CA: Morgan

Kaufmann, 1988.

S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture”, in

Advances in neural information processing systems 2, D. S. Touretzky, Ed., Los

Altos, CA: Morgan Kaufmann, 1990, pp. 524-532.

M. Frean, “The upstart algorithm: a method for constructing and training feedforward

neural networks”, Neural Computation, 2(2), pp. 198-209, 1990.

L. K. Hansen and M. W. Pedersen, “Controlled growth of cascade-correlation nets”, in

Proceedings of ICANN, 1994, pp. 797- 800.

J. Hwang, S. You, S. Lay and I. Jou, "The cascade-correlation learning: A projection

pursuit learning perspective", IEEE Transactions in Neural Networks, 7, pp.

278-289, 1996.

H. Klagges and M. Soegtrop, “Limited fan-in random wired cascade-correlation”,

Neuroprose archive, Munich, IBM Research Division, Physics Group, 1992.

J. J. T. Lahnajarvi, M. Lehtokangas and J. Saarinen, “Evaluation of constructive neural

networks with cascaded architectures”, Neurocomputing, 48(1-4), pp. 573-607,

2002.

Cascor comparison using a student-teacher task

S. A. Lawrence, A. Back, A. C. Tsoi and C. L. Giles, “On the distribution of

performance from multiple neural network trials”, IEEE Trans. on Neural

Networks, 8(6), pp. 1507-1517, 1997.

S. Lawrence, C. L. Giles and A. C. Tsoi , “Lessons in neural network training:

Overfitting may be harder than expected”, in Proceedings of the Fourteenth

National Conference on Artificial Intelligence, AAAI-97, 1997, pp. 540-545.

E. Littmann and H. Ritter, “Generalization abilities of cascade network architectures”,

in Advances in Neural Information Processing System 5, S. J. Hanson, J. Cowan

and C. L. Giles, Ed., Morgan Kaufmann, 1993, pp. 188-195.

M. Mezard and J. Nadal, “Learning feedforward networks: The tiling algorithm”, J.

Phys. A: Math. Gen., 22, pp. 2191-2203, 1989.

R. Parekh, J. Yang and V. Honavar, “Constructive neural network learning algorithms

for pattern classification”, IEEE Trans. Neural networks, 11(2), pp. 436-451,

2000.

H. Park, N. Murata and S. Amari, “Improving generalization performance of natural

gradient learning using optimized regularization by NIC”, Neural Computation,

16, pp. 355-382, 2004.

D. S. Phatak and I. Koren, “Connectivity and performance tradeoffs in the cascade

correlation learning architecture”, IEEE Transactions on Neural Networks, 5(6),

pp. 930-935, 1994.

L. Prechelt, “PROBEN1 - A set of neural network benchmark problems and

benchmarking rules”, Technical report, Karlsruhe, Germany (1994).

L. Prechelt, “Investigation of the CasCor Family of Learning Algorithms”, Neural

Networks, 10(5), pp. 885-896, 1997.

M. Y. Rafiq, G. Bugmann, and D. J Easterbrook, “Neural network design for

engineering applications”, Computers and Structures, 79, pp. 1541-1552, 2001.

S. R. Quartz, “The constructivist brain”, Trends in Cognitive Sciences, 3, pp. 48-57,

1999.

S. G. Romaniuk and L. O. Hall, “Divide and conquer neural networks”, Neural

Networks, 6, pp. 1105-1116, 1993.

D. Saad (Ed.), On-line learning in neural networks, Cambridge: Cambridge University

Press, 1999.

T. R. Shultz, Computational developmental psychology. Cambridge, MA: MIT Press,

2003.

T. R. Shultz, Constructive learning in the modeling of psychological development. In

Processes of change in brain and cognitive development: Attention and

performance XXI, Y. Munakata and M. H. Johnson, Eds., Oxford: Oxford

University Press, 2006, pp. 61-86.

T. R. Shultz, S. P. Mysore, and S. R. Quartz, S. R. Why let networks grow? In

Neuroconstructivism: Perspectives and prospects, D. Mareschal, S. Sirois, G.

Westermann and M. H. Johnson, Eds., Oxford: Oxford University Press, 2007,

Vol. 2, pp. 65-98.

T. R. Shultz, D. Mareschal and W. C. Schmidt, “Modeling cognitive development on

balance scale phenomena”, Machine Learning, 16, pp. 57-86, 1994.

T. R. Shultz and F. Rivest, “Knowledge-based cascade-correlation: Using knowledge to

speed learning”, Connection Science, 13, pp. 43-72, 2001.

Cascor comparison using a student-teacher task

S. Sjogaard, “A conceptual approach to generalization in dynamic neural networks”.

Ph.D. thesis, Computer Science Department, Aarhus University, Denmark

(1991).

J. P. Thivierge, F. Rivest, and T. R. Shultz, “A dual-phase technique for pruning

constructive networks”, in Proceedings of the 2003 IEEE International Joint

Conference on Neural Networks, 2003, pp. 559-564.

Y. Takane, Y. Oshima-Takane and T. R. Shultz, “Network analyses: The case of first

and second person pronouns”, in Proceedings of the 1995 IEEE International

Conference on Systems, Man and Cybernetics, 1995, pp. 3594-3599.

S. Waugh and A. Adams, “Connection strategies in cascade-correlation”, in

Proceedings: The Fifth Australian Conference on Neural Networks, 1994, pp. 1-

4.

E. J. Wisniewski, “Prior knowledge and functionally relevant features in concept

learning”, Journal of Experimental Psychology: Learning, Memory, and

Cognition, 21, pp. 449-468, 1995.

Cascor comparison using a student-teacher task

Figures and tables

 Low network I/O function

complexity

(ht = 2)

High network I/O function

complexity

(ht = 20)

Standard

cascor

Flat

cascor

Fig. 1. Examples of low and high complexity network I/O functions generated using standard and flat

cascor teacher networks over the [-1,1]
2
 plane. Gray levels encode output values (z).

Cascor comparison using a student-teacher task

0

10

20

30

40

2 20

Hidden units in teacher

L
o

s
s
le

s
s
 f

il
e
 s

iz
e
 (

K
b

)

Standard Flat

Fig. 2 Mean function complexity and SE bars measured using lossless compressed file size as a function

of hidden unit count in the teacher network.

Cascor comparison using a student-teacher task

Table 1 – Calculation of number of connection weights

Network type

Number of weights after training

Flat (inputs + 1) x (outputs + hidden) + hidden x outputs

Standard 0.5 x hidden x (hidden + 1) + inputs x hidden + outputs x (inputs + hidden + 1)

Table 2 - Calculation of computational cost for training

Network type

Phase

Weight changes

Flat Input Candidates x (inputs + 1) x Epochs input phase

Standard Input Candidates x ((inputs + 1) + (hidden – 1)) x Epochs output phase

Flat and standard Output Outputs x ((inputs + 1) + hidden) x Epochs output phase

Table 3 - Simulation Parameters Summary

Parameter

Value

Inputs count 6

Outputs count 1

Input transfer function type Linear

Hidden and output transfer function type Asigmoid (range [0,1])

Train and test sample size 21609

Maximum hidden unit recruitments allowed 10 x number of hidden units in teacher network

Weight range [-1,1]

Cascor comparison using a student-teacher task

Table 4 - Learning Parameters Summary (QuickProp)

Parameter

Output Phase

Input Phase

Learning rate 0.175 1.0

Decay 0.0002 0.0

Maximum growth factor 2.0 2.0

Max epochs 100 100

Change threshold 0.01 0.03

Patience 8 8

Score threshold 0.05 NA

Table 5 – GLM Statistical significance of univariate main effects („-‟ when p > 0.05).

Degrees of freedom for all F tests in this table are 1, 380.

Factors
Dependent measures

Recruits Weights Epochs Cost Train error Test error

Student -
F = 15,

p < 0.001
-

F = 15,

p < 0.001
- -

ht
F = 16,

p < 0.001

F = 16,

p < 0.001

F = 16,

p < 0.001

F = 15,

p < 0.001
- -

Teacher
F = 10,

p = 0.002

F = 9,

p = 0.002

F = 7,

p = 0.010

F = 5,

p = 0.024
- -

ht x

student
-

F = 2.1,

p = 0.034
- - - -

Student x

Teacher

F = 6,

p = 0.015
-

F = 4.0,

p = 0.045
- - -

ht x

teacher
- - - - - -

Student x

ht x

teacher

- - - - - -

Cascor comparison using a student-teacher task

0

5

10

15

20

25

30

35

0 5 10 15 20

Hidden units in standard teacher net

H
id

d
e
n
 U

n
its

Flat Standard

Fig. 3. Recruited hidden units in student networks as a function of the number of hidden units in the

teacher network and type of student network. Training samples were generated by standard teacher

networks.

0

5

10

15

20

0 5 10 15 20

Hidden units in f lat teacher net

H
id

d
e

n
 U

n
it
s

Flat Standard

Fig. 4. Recruited hidden units in student networks as a function of the number of hidden units in the

teacher network and type of student network. Training samples were generated by flat teacher networks.

Note that vertical scales are different in Fig. 3 and Fig. 4 .

Cascor comparison using a student-teacher task

0

100

200

300

400

500

0 5 10 15 20

Hidden units in standard teacher net

W
e

ig
h

ts

Flat Standard

Fig. 5. Mean number of connection weights and SE bars as a function of the number of hidden units in

the teacher network and type of student network. Training samples were generated by standard teacher

networks.

0

100

200

300

400

500

600

0 5 10 15 20

Hidden units in f lat teacher net

W
e
ig

h
ts

Flat Standard

Fig. 6. Number of connection weights and SE bars as a function of the number of hidden units in the

teacher network and type of student network. Training samples were generated by flat teacher networks.

Cascor comparison using a student-teacher task

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Hidden units in standard teacher net

T
h
o
u
s
a
n
d
s
 o

f
E

p
o
c
h
s
 f
o
r

T
ra

in
in

g

Flat Standard

Fig. 7. Number of epochs required for training and SE bars as a function of the number of hidden units in

the teacher network and type of student network. Training samples were generated by standard teacher

networks.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Hidden units in f lat teacher net

T
h
o
u
s
a
n
d
s
 o

f
E

p
o
c
h
s
 f
o
r

T
ra

in
in

g

Flat Standard

Fig. 8. Number of epochs required for training and SE bars as a function of the number of hidden units in

the teacher network and type of student network. Training samples were generated by flat teacher

networks.

Cascor comparison using a student-teacher task

0

10

20

30

40

50

60

70

0 5 10 15 20

Hidden units in standard teacher net

T
ra

in
in

g
 C

o
m

p
u
ta

tio
n
a
l c

o
s
t
(T

h
o
u
s
a
n
d
s
) Flat Standard

Fig. 9. Computational cost for training and SE bars as a function of the number of hidden units in the

teacher network and type of student network. Training samples were generated by standard teacher

networks.

Fig. 10. Computational cost for training and SE bars as a function of the number of hidden units in the

teacher network and type of student network. Training samples were generated by flat teacher networks.

0

10

20

30

40

50

60

70

0 5 10 15 20

Hidden units in f lat teacher net

T
ra

in
in

g
 C

o
m

p
u
ta

tio
n
a
l c

o
s
t
(T

h
o
u
s
a
n
d
s
)

Flat Standard

Cascor comparison using a student-teacher task

0

1

2

3

4

5

6

7

8

0 5 10 15 20

Hidden units in standard teacher net

G
e
n
e
ra

liz
a
tio

n
 (

E
rr

o
r

o
n
 T

e
s
t
s
e
t)

Flat Standard

Fig. 11. Generalization (Error on test set after training) and SE bars as a function of the number of hidden

units in the teacher network and type of student network. Training samples were generated by standard

teacher networks.

0

1

2

3

4

5

6

0 5 10 15 20

Hidden units in f lat teacher net

G
e
n
e
ra

liz
a
tio

n
 (

E
rr

o
r

o
n
 T

e
s
t
s
e
t)

Flat Standard

Fig. 12. Generalization (Error on test set after training) and SE bars as a function of the number of hidden

units in the teacher network and type of student network. Samples were generated by flat teacher

networks.

