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Cascade-correlation (cascor) networks grow by recruiting hidden units to adjust 

their computational power to the task being learned. The standard cascor 

algorithm recruits each hidden unit on a new layer, creating deep networks. In 

contrast, the flat cascor variant adds all recruited hidden units on a single hidden 

layer. Student-teacher network approximation tasks were used to investigate the 

ability of flat and standard cascor networks to learn the input-output mapping of 

other, randomly initialized flat and standard cascor networks. For low-

complexity approximation tasks, there was no significant performance 

difference between flat and standard student networks. Contrary to the common 

belief that standard cascor does not generalize well due to cascading weights 

creating deep networks, we found that both standard and flat cascor generalized 

well on problems of varying complexity. On high-complexity tasks, flat cascor 

networks had fewer connection weights and learned with less computational 

cost than standard networks did.  
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1 Introduction 

Backpropagation is a popular neural network algorithm, and a standard to which other 

learning techniques are often compared. The number and arrangement of hidden units 

and hidden layers in backpropagation networks is generally set by the network designer 

based on domain-specific expertise or heuristic rules (e.g. see Rafiq et al., 2001).  

 

By contrast, in constructive algorithms, hidden unit topology is determined 

automatically as part of the learning process. Constructive networks can be initialised 

without any hidden units and they accumulate hidden units until they have enough 

computational power to solve the target task. 
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Several constructive neural networks techniques have been proposed. Cascade-

Correlation (cascor) (Fahlman and Lebiere 1990) is a general purpose constructive 

technique capable of learning both classification and continuous function 

approximation tasks.  

 

In this paper, we address a common criticism of standard cascor: a poor ability to 

generalize due to its tendency to build deep networks of many hidden layers. We 

compare generalization of standard cascor with another variant of cascor that builds 

shallow, one-hidden-layer networks. This question is important because neural network 

architectures are often evaluated and compared based primarily on their ability to 

generalize.  

 

In contrast to cascor, most other constructive neural network algorithms (e.g. Extentron 

(Baffes and Zell 1992), Upstart (Frean 1990), Tiling (Mezard and Nadal 1989), Divide 

& Conquer (Romaniuk and Hall 1993), and Pyramid (Parekh et al. 2000)) are limited to 

classification tasks because their learning relies on the partitioning of training patterns 

as correctly and incorrectly classified, or on the positioning of hyperplanes to divide the 

input space into discrete regions. Consequently, these algorithms generally build neural 

networks composed exclusively of discontinuous, binary threshold units.  

 

Classification can be considered as a special case of function approximation where 

outputs are binary or m-ary. In contrast to binary classifications, function 

approximation can be more complex when the quality of the fit is assessed using a 

continuous (real-valued) error function requiring finer discriminations. To our 

knowledge, the only important constructive neural network algorithm besides cascor 

capable of learning function approximation tasks is Constraint Based Decomposition 

(CBD) (Draghici 1996, 2001). When used for function approximation, this algorithm 

first converts the original task where targets are real-valued into a simpler, discrete 

classification problem using the sign of those patterns. For example, if the original 

problem has targets -2.5, 1.3, -0.5, the discrete classification problem would be -1, +1, -

1. This classification problem is learned using the standard CBD algorithm, and the 

resulting network (topology and weights) is used to initialize a standard 

backpropagation neural network to be trained on the original (function approximation) 

task. Although interesting, CBD appears less cognitively and biologically plausible 

than cascor because of the additional complexity and processing required to implement 

the discrete classification task, and because there is no psychological or neurological 

evidence for a mechanism to switch between classification and function approximation 

tasks.  

1.1 Cognitive modelling 

Constructive neural network algorithms are interesting for modelling psychological 

processes because they are naturally able to model learning and cognitive development 

in a single unified system (Shultz 2003). Cascor has been successfully applied to the 

modelling of many cognitive developmental tasks such as the integration of distance, 

time, and velocity concepts (Buckingham and Shultz 2000), the balance-scale problem 

(Shultz et al. 1994) and personal pronouns (Takane et al. 1995). Cascor has several 
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advantages in modelling cognition. For one thing, there is neuroscience evidence for 

network growth through neuro- and synapto-genesis under the control of learning 

(Shultz et al. 2007). Also, the Knowledge-Based Cascade-Correlation (KBCC) variant 

of the algorithm (Shultz and Rivest 2001) can model how relevant prior knowledge can 

be recruited to facilitate the learning of a new task, a phenomenon that is very common 

in human learning (Wisniewski 1995).  

1.2  The cascor algorithm 

The cascor algorithm begins with a simple network topology consisting of input and 

output units only, and recruits hidden units to provide the network with additional 

computational power for learning. Units (typically with sigmoid transfer functions) are 

recruited from a pool of candidates. Learning in cascor proceeds in an alternation of 

two phases: 

 In input phase, input weights of all candidates units in the pool are trained to 

maximize the covariance (S) between their outputs (V) and the residual error 

(E):  

 

 
o p
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where o is the network output and p is the training pattern. V and oE represent 

the mean values of V and E over all patterns. The candidate unit with the highest 

covariance is then inserted into the network at the end of an input phase. 

 In output phase, all the weights connected to the output layer are trained to 

minimize residual network error. 

 

In input and output phases, learning is done using an algorithm for training feed-

forward networks, such as QuickProp (Fahlman 1988). Changes of phase occur when 

covariance maximization or error reduction stagnates in the current phase. 

 

In its original, standard form described by Fahlman and Lebiere (1990), the cascor 

algorithm cascades all recruited hidden units. That is, in addition to being fed by input 

units, hidden units are fed by all previously recruited hidden units. As a result, cascor 

inserts each new unit into a new layer, creating deep networks with as many hidden 

layers as recruited units.   

 

By contrast, the flat variant of cascor, described by Sjogaard (1991), adds new recruited 

units onto a single layer (i.e. cascaded connections are eliminated), thus limiting the 

depth of the network. Except for this difference in hidden unit connectivity, flat and 

standard cascor are identical. 

1.3 Generalization in cascor networks 

Generalization in cascor networks is sometimes cited as problematic, but the literature 

on cascor generalization provides contradictory results. In psychology simulations, 

cascor appears to generalize better than backprop. Shultz (2006) compared 
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backpropagation and cascor on ability to learn and cover several cognitive-

developmental phenomena. Cascor was consistently superior, but the limitations of 

backpropagation were not restricted to generalization problems. Sometimes 

backpropagation failed to learn, and other times it failed to cover developmental stages 

seen in children.  

 

On the other hand, Adams and Waugh (1995) reported that, in a Gaussian-function 

approximation problem, cascor produced an uneven stairlike output function exhibiting 

poor generalization compared to a flat backpropagation network. The constructive 

nature of cascor may cause sigmoid units to saturate, as Adams and Waugh observed: 

„the steepness of the steps reflects the fact that many of the sigmoids in the net are 

being driven hard on or hard off‟ (p. 945). Possibly this is caused by the fact that 

learning in output phase continues until output error stagnates, at which point the 

learning algorithm switches to input phase to recruit a new hidden unit. Output error 

stagnation usually happens after sigmoids saturate. Furthermore, the cascor learning 

algorithm freezes input weights of recruited units, which keeps them saturated. This 

allows cascor to build powerful feature detectors, but also tends to generate highly 

nonlinear outputs. As a possible solution to problems with sigmoid units in cascor, 

Hwang et al. (1996) proposed trainable nonlinear nodal activation functions. Such 

saturation effects are not unique to cascor; they are potentially present in any neural 

network using sigmoid units, including standard backpropagation networks.  

 

Excessive network depth due to hidden-unit cascading is also considered detrimental to 

generalization (Prechelt 1997).  Deep cascading in standard cascor has been criticized 

for biasing cascor towards nonlinearity (Prechelt 1997) and for harming the learning of 

more linear problems (Sjogaard 1991). A variety of techniques restrict the number of 

connection weights, for example, pruning (Hansen and Pedersen 1994), restricting fan-

in (Phatak and Koren 1994, Klagges and Soegtrop 1992) and limiting cascaded 

connections between layers (Waugh and Adams 1994). These techniques can each help 

to limit network depth.  

 

Sjogaard (1991) proposed a modification in cascor connectivity, called flat cascor, to 

restrict network depth to a single hidden layer. He found that the flat variant of cascor 

generalized better than standard cascor on the single artificial problem he tested. 

Prechelt (1997) compared, among other things, standard cascor with a version of flat 

cascor that uses error minimisation for recruiting hidden units on his PROBEN1 test 

bed. He measured generalization ability and number of recruited units and found that, 

in most cases, there was no significant difference between the two algorithms. In the 

cases where there were differences in generalization, „not cascading hidden units is 

superior to cascading them on some problems and inferior on others; the former case 

occurred more often‟ (Prechelt 1997; p. 895). Littman and Ritter (1993) found that, on a 

task consisting of time series prediction based on the Mackey-Glass differential 

equation, deeply cascaded network architectures
†
 tend to overfit small data sets less 

than shallow, broad architectures (i.e. flat cascor) containing the same number of nodes.  

                                                 
†
 The deeply cascaded architectures used by Littman and Ritter (1993) are not strictly speaking standard 

cascor because they allow multiple units per hidden layer, but they are nonetheless deep. 
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In short, deciding whether or not to cascade hidden units is not straightforward. 

Whether standard (deep) cascor networks are better or worse than flat cascor networks 

is controversial and may well depend on the particular task being learned. Furthermore, 

performance on small collections of problems may not be representative of overall 

performance, meaning that further experimentation is required before a conclusion can 

be reached. 

1.4 A novel approach to studying cascading hidden units in cascor  

Because previous research, with its variable and inconsistent results, may be limited to 

the particularities of the specific problems investigated, our work introduces a problem-

neutral empirical approach for evaluating the effect of cascading hidden units. Our 

method is based on having networks learn the input/output functions of other cascor 

networks, also known as the student-teacher task (Saad 1999). More specifically, 

standard and flat cascor networks were trained to approximate the output of either 

standard or flat, randomly-initialized cascor networks. Our goal was to determine 

whether flat or standard cascor networks make a better function approximator on a task 

where the biases are known and strictly controlled. The characteristic difference 

between standard and flat cascor networks is the respective presence vs. absence of 

connection weights between hidden units. 

 

The following terms are used throughout the article: 

1. Network‟s I/O function: Function implemented by a neural network that maps 

its inputs onto its outputs. The complexity of this function is related to the 

number of hidden units in the network, to network connectivity and to the 

magnitudes and signs of connection weights. 

2. Teacher network: a cascor network (standard or flat) that is used to generate 

training and test patterns. It is initialized with a predetermined number of hidden 

units, and random connection weights. It is not trained on any task; instead its 

network I/O function depends only on those random weight values. Teacher 

networks‟ role is limited to providing a random input/output function on which 

student networks will be trained. 

3. Student network: a cascor network (standard or flat) that learns the training set 

produced by the teacher network, using the cascor training algorithm. In other 

words, student networks‟ I/O functions are trained to approximate I/O functions 

of teacher networks. 

 

Student-teacher tasks have been used for studying various characteristics of neural 

networks, including overfitting (Amari et al. 1997, Lawrence et al. 1997), the 

probability distribution of performance parameters (Lawrence et al. 1997), and learning 

algorithms (Park et al. 2004). 

 

In our context, the student-teacher method affords a direct comparison of the functional 

mappings (inputs onto outputs) that the two architectures are capable of representing. 

Unlike real-world problems with unknown biases, biases here are known and 

controlled. The I/O functions produced by standard teachers are known to be more non-
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linear than those produced by flat teachers. This method also allows systematic 

exploration of large areas of problem space because weights are randomly initialized 

and the complexity of the network‟s I/O function is varied by manipulating the number 

of hidden units in the teacher network. We compare standard and flat cascor networks 

to investigate the impact of cascading weights on different performance measures, at 

different complexity levels. Are cascades detrimental to generalization? In other words, 

do flat cascor networks generalize better than standard networks? Also, are there 

differences between the two architectures in terms of size and training efficiency? 

2 Experimental design  

This section introduces experimental design parameters. This experiment uses a three-

way one-repeated-measure design with two independent factors (teacher-network type 

with 2 levels (flat and standard) and teacher hidden count , ht, with 10 levels (2, 4, 6, 8, 

10, 12, 14, 16, 18 and 20)) and one repeated factor (student-network type with 2 levels 

(flat and standard)). This design affords all combinations of teacher and student types 

(flat-flat, standard-flat, flat-standard and standard-standard) at different levels of 

complexity. 

 

A relatively large number (six) of performance measures of student networks are 

recorded: 

 Network size after training 

o Number of recruited hidden units 

o Number of weights  

 Training effort 

o Number of training epochs  

o Computational cost for training  

 Approximation quality  

o Error on train set (accuracy)  

o Error on test set (generalization)  

 

In this experiment teacher networks are constructed (as opposed to being trained) with a 

given number of hidden units and a given connectivity (flat or standard). Network 

connections are initialized with random weights. Teacher networks had no direct input-

output connections: input activations had to pass through hidden units to get to the 

outputs. This maximized the difference between flat and standard teachers because their 

characteristic difference lies in the way hidden units are connected. To explore large 

portions of the possible I/O function space, and to provide sufficient power for 

statistical analyses, experimental conditions were repeated 20 times with different 

teacher random weights for each combination of teacher network type (flat or standard) 

and number of hidden units ht. 

2.1 Teacher I/O function complexity   

The number of hidden units in the teacher network, ht, influences task complexity. Fig. 

1 shows examples of low (2 hidden units) and high (20 hidden units) complexity 

network I/O functions generated using 2 inputs and 1 output. Compressed file size can 
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be used as a measure of objective information content (Donderi 2006; Donderi and 

McFadden 2005). Mean file size (N=20 networks per condition) is presented in Fig. 2 

as a function of number of hidden units. Images were compressed using Portable 

Network Graphics (PNG), an open, lossless image compression format similar to JPEG. 

 

Insert fig.1 about here 

 

 

We performed a 2 by 2 ANOVA to examine the effects on file size of teacher type (2 

levels: standard and flat cascor) and of the number of hidden units in the teachers, ht, (2 

levels: 2 and 20 hidden units). We found three significant effects. First, file size 

increases with the number of hidden units ht (F(1,396) = 743, p < 0.001), indicating that 

the more hidden units, the more information content, and thus greater complexity. 

Second, we found a main effect of teacher type (F(1,396) = 28, p < 0.001), indicating 

that standard teachers generated larger files, and therefore more complexity, than flat 

teachers. Finally, we found an interaction between teacher and ht (F(1,396) = 37, p < 

0.001) suggesting that standard teachers are more complex than flat teachers only when 

the teacher network has many hidden units.  

 

 

Insert fig.2 about here 

 

 

2.2 Number of connection weights and computational cost 

Table 1 shows how the number of connection weights is calculated for each student 

network.  

 

Insert table 1 about here 

 

 

Computational cost measures the number of weight adjustments required for training 

the network, as shown in Table 2. To compute this value, as training alternates between 

input and output phases (beginning in output phase), the sum of number of weights to 

train is multiplied by the number of epochs in each specific phase.  

 

Insert table 2 about here 

 

 

2.3 Task parameters 

In contrast to most real-world tasks where the problem determines certain neural 

network parameters such as number of inputs and outputs, student-teacher tasks have 
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several free parameters. In this section, these parameters are explained and their 

settings are justified. The task parameters included number of inputs and outputs, levels 

of the ht factor, the limit on the number of hidden units in the student (hs max), the 

number of training patterns, and the range over which random connection weights in 

teacher networks vary. 

2.3.1 Inputs and outputs 

We used continuous coding for input values. We selected an input range of [-1,1] 

because it is representative of typical encodings. Our choice of number of inputs was 

the result of a compromise between choosing a realistic value (i.e. representative of 

real-world problems) and limiting the number of inputs to minimize computational 

cost. In Prechelt‟s (1997) real-world benchmarks, where a mixture of binary and 

continuous inputs are used for each function approximation problem, the mean number 

of continuous inputs is 5 (min=0, max=14) and the mean number of total inputs is 27 

(min=8, max=125). We chose 6 continuous inputs as a compromise value. A single 

continuous output with an asigmoid activation function (range 0 to 1) was used to allow 

visualization of training data using gray scale coding (see Fig. 1). 

2.3.2 Number of hidden units in teacher networks (ht) and maximum number 

of recruitments in student networks (hs max) 

In order to study the effect of complexity, the range of [2,20] was chosen for the 

number of hidden units in the teacher network (ht). This range yields a wide coverage 

of problem complexity while being compatible with real-world tasks, as the average 

number of hidden units recruited for learning tasks in the PROBEN1 problem set was 8 

(Prechelt 1997).  

 

Because task difficulty can vary depending on teacher networks‟ random initialization, 

we expected a large variance in the number of student network recruits. To limit 

computational cost, we imposed a ceiling (called hs max) on the maximum number of 

hidden units student networks are allowed to recruit. We empirically determined that a 

maximum of 10 times the number of hidden units in the teacher network (ht) was a 

suitable value for hs max. The argument is twofold.  First, as explained in section 2.3.3, 

the number of training patterns must exceed the number of connections in the student 

network. To establish a fixed upper bound on the number of training patterns, we need 

to impose a limit on the maximum number of hidden units in student networks. Second, 

if students did not learn the task with ten times more hidden units than ht, they may be 

stuck in local error minima perhaps due to unfavourable initial conditions. Thus, we 

specify that student networks can recruit at most 200 units, occurring when the teacher 

network contains 20 hidden units.  

2.3.3 Number of training patterns 

With this artificial task, we can generate as much data as we like, i.e. we can use the 

teacher network to produce any number of training patterns. If we select too few 

training patterns, there is a risk of overfitting. Indeed, if student networks have too 

many connections for a given training set size, they may have enough computational 

power to rote-memorize training patterns. Such overfitting usually results in poor 
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generalisation. A common guideline to prevent overfitting is to make sure there are 

more training patterns than there are connections to train.  

 

Consistent with this guideline, we selected a number of training patterns equal to the 

maximum possible number of connections in a student network. As seen in section 

2.3.2, the maximum number of hidden units in student networks is 200. Thus, the 

maximum number of connections in a student network with 6 inputs is 21507 (see 

Table 1). Our legacy code represented the input space as a square grid, so it was 

convenient to use a squared integer to compute sample size. The closest squared integer 

was 147. Thus, we used 21609, the square of 147, as training and testing set sizes in all 

simulations. 

2.3.4 Connection weight range 

We determined the range over which random connection weights in the teacher 

network would vary. In general, the complexity (or difficulty) of the task increases with 

weight range because output units saturate when the weighted sum of their inputs is 

large. We empirically selected a weight range of [-1,1] to make the number of recruits 

in the student network to be approximately equal to the number of hidden units in the 

teacher network (i.e. ht ≈ hs).  

2.3.5 Summary of simulation parameters 

Table 3 summarizes simulation parameters used for student networks, both standard 

and flat. 

 

Insert table 3 about here 

 

 

2.4 Learning parameters 

We trained student networks using QuickProp (Fahlman 1988). Table 4 summarizes the 

learning parameters used for student networks. Except for score threshold, we used the 

default learning parameter settings of Fahlman‟s original LISP implementation of 

cascor. No weight change is allowed to be greater in magnitude than maximum growth 

factor times the previous step for that weight (Fahlman 1988). Cascor changes phase if 

error reduction (or correlation increase) has been lower than change threshold across 

patience epochs (Fahlman 1990). Cascor will also switch phase after having reached 

max epochs in the current phase. Decay is used to keep weights from growing too big. 

The learning rate controls the amount of gradient descent used in updating weights. 

See Fahlman (1990) and his LISP code in the CMU AI repository for additional details 

of learning parameters. 

 

Score threshold controls how close network output values must be to target values for 

learning to be successful. In output phase, training finishes when, for all outputs oi,j and 

targets ti,j, | oi,j – ti,j | < score threshold. Fahlman‟s default value for score threshold is 

0.4. For target values in a range of [0,1], such a score threshold can be suitable for 

binary classification tasks, but not for function approximation because it allows for a 



Cascor comparison using a student-teacher task 

tolerance on approximation error of 80%  (+/- 0.4 on a range of [0,1]).  Here, we 

selected a score threshold of 0.05 to be within 10% (i.e. +/- 0.05) of target values. 

 

Insert table 4 about here 

 

3 Results 

Using a General Linear Model (GLM), we performed univariate tests to investigate 

which independent factors had significant influences on the dependent measures. We 

further analysed significant interactions using simple main effects tests. This section 

presents the important and statistically significant results.  

 

To improve normality, we performed all our analyses with log-transformed data. 

However, for ease of interpretation, all reported means and SDs and Figs. 5 to 8 use 

untransformed data. Consequently, error bars in these figures are not indicative of 

statistical significance. Table 5 summarizes results of the univariate GLM analyses.  

 

Insert table 5 about here 

 

 

3.1 Number of recruited hidden units 

The number of hidden units is a measure of student network size. Results are presented 

in Fig. 3 for standard teachers and Fig. 4 for flat teachers. As noted in Table 5, for this 

dependent measure we found significant main effects of ht and teacher type, and a 

significant interaction between student and teacher. 

 

Insert fig. 3 about here 

 

 

 

Insert fig. 4 about here 

 

 

First, the main effect of the number of hidden units in teacher networks (ht) reflects that 

student networks recruited about 50 times more hidden units with complex tasks (i.e. 

teacher I/O functions generated with ht = 20 hidden units) than with simple tasks (ht = 2 

hidden units). At ht = 20 they recruited a mean of 15.6 (SD=18.3) units, and at ht = 2, 

student networks recruited a mean of 0.3 (SD=0.7) units.  

 

Second, the significant main effect of teacher type reflects that student networks 

recruited about twice as many hidden units to learn standard-teacher tasks (M=7.0, 
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SD=15.2) than flat-teacher tasks (M=3.6, SD=8.6). This is further evidence that 

standard-teacher tasks are more complex than flat-teacher tasks.  

 

Finally, the significant interaction between teacher and student types suggests that, 

although students did not require significantly different numbers of recruits with flat 

teachers (flat student: M=3.4, SD=7.8; standard student: M=3.8, SD=9.3; difference not 

significant at p=0.344), standard students recruited fewer units than flat students with 

standard teachers (standard students: M=5.7, SD=10.7; flat students M=8.4, SD=18.6, 

difference significant at p=0.012). In short, with standard teachers, standard students 

recruited fewer units than did flat students. 

3.2 Number of connection weights 

Number of connection weights is another measure of network size. Results on number 

of weights are presented in Fig. 5 for standard teachers and Fig. 6 for flat teachers. As 

noted in Table 5, there were significant main effects of student type, ht and teacher 

type, and a significant interaction between student and ht. 

 

Insert fig. 5 about here 

 

 

 

Insert fig. 6 about here 

 

 

First, the main effect of student type reflects that standard students built networks with 

about twice as many connection weights (M=104, SD=281) as flat students (M=54, 

SD=116).  

 

Second, the main effect of the number of hidden units in teacher networks (ht) reflects 

that complex tasks (ht = 20) required about 25 times more connections (M=251, 

SD=413) than simple tasks (for ht = 2, M=9.4, SD=5.8 connections).  

 

Third, the main effect of teacher type reflects that student networks had about 1.6 times 

more connections when learning a standard-teacher task (M=98, SD=227) than a flat-

teacher task (M=60, SD=204).  

 

Finally, the ht x student interaction reflects that student networks did not differ for 

simple tasks (for ht = 2, flat students M=9.4, SD=6.8; standard students M=9.5, 

SD=4.7; p=0.8), but that standard students had more connections (M=363, SD=542) 

than flat students (M=138, SD=160; significant difference at p<0.001) when task 

complexity was high (ht = 20).  

 

In short, an analysis of number of connection weights in student networks suggests that 

student networks did not differ in size for simple tasks, but that flat networks were 

smaller when learning complex tasks. Furthermore, those results support our hypothesis 
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that task complexity increases with the number of hidden units in the teacher (ht), and 

that standard-teacher tasks are more complex than flat tasks.  

3.3 Number of epochs 

The number of total epochs to train is a measure of training effort. Results are presented 

in Fig. 7 for standard teachers and Fig. 8 for flat teachers. As noted in Table 5, we 

found significant main effects of ht and teacher type, and a significant interaction 

between student and teacher. 

 

Insert fig. 7 about here 

 

 

 

Insert fig. 8 about here 

 

 

First, the main effect of number of hidden units in the teacher (ht) reflects the fact that 

student networks took about 25 times longer to learn complex teacher functions 

(M=640, SD=786 epochs for ht = 20) than simpler functions (M=24, SD=50 epochs for 

ht = 2).  

 

Second, the main effect of teacher type reflects that students needed about 1.8 times 

more epochs to learn standard-teacher functions (M=287, SD=570) than flat-teacher 

functions (M=162, SD=388).  

 

Finally, the interaction between student and teacher types reflects that flat students took 

fewer epochs to learn the flat-teacher functions (M=133, SD=261) than standard 

students (M=191, SD=482; difference significant at p=0.01), but that standard and flat 

students did not differ (p=0.8) in the number of epochs needed to learn standard-teacher 

functions (standard students: M=274, SD=523; flat students: M=300, SD=615). 

 

In short, students took more epochs to learn more complex tasks and complexity 

increased with standard teachers and the number of hidden units in the teacher network. 

Also, flat students learned flat-teacher tasks faster than standard students did, while flat 

and standard students learned standard-teacher tasks at similar speeds.   

 

3.4 Computational cost for training 

Computational cost is another measure of training effort. As noted in Table 5, there 

were significant main effects of student type, ht and teacher type. Figs. 9 and 10 present 

results of computational training cost for standard and flat teacher networks 

respectively.  
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Insert fig. 9 about here 

 

 

 

Insert fig. 10 about here 

 

 

First, the main effect of student reflects the fact that flat students trained about 1.5 times 

more efficiently (M=7735, SD=26229) than standard students (M=11616, SD=32423). 

The size and direction of this main effect are similar to that of student type on number 

of connection weights, suggesting those additional computations are used to train the 

extra cascaded weights in standard students,.  

 

Second, the main effect of ht reflects that complex teacher tasks (M=30188, SD=49511 

for ht = 20) took about 50 times more computation to train than simpler teacher tasks 

(M=627, SD=1467 for ht = 2).  

 

Finally, the main effect of teacher type reflects that standard-teacher functions took 

about twice as much computation to learn (M=12631, SD=34012) than flat-teacher 

functions (M=versus 6720, SD=23927). 

 

3.5 Student network error 

Fig. 11 and Fig. 12 present results of error on test set (generalization) for standard and 

flat teacher networks respectively. As was seen in Table 5, we found no significant 

main or interaction effects on accuracy (error on train set) or generalization (error on 

test set).  Accuracy and generalization graphs were very similar, thus for conciseness, 

only generalization graphs are displayed here. 

 

The similarity between accuracy and generalization suggests two things. First, flat and 

standard cascor networks generalised well because network error was not larger on 

unseen (test) data than on data used for training. Second, the density of training data 

was probably high enough to get a good function approximation in all regions of the 

problem space. 

 

 

Insert fig. 11 about here 

 

 

 

Insert fig. 12 about here 

 

 

 



Cascor comparison using a student-teacher task 

4 Discussion 

Our results suggest that: 

 

1. Both flat and standard networks were able to learn and generalise well on functions 

generated by either standard or flat teacher networks.  

2. There were no differences between standard and flat cascor in generalization and 

accuracy at any level of complexity studied. 

3. When the task was simple
‡
 (for teacher networks of fewer than about 14 hidden 

units), there were no performance differences between flat and standard student 

networks.  

4. When there were student differences on training effort, flat networks trained more 

efficiently than standard networks. First, flat students trained with less 

computational cost than standard students. Second, flat students learned flat tasks, 

but not standard tasks, in fewer epochs than standard students did.   

5. When there were student differences on network size, flat students required fewer 

connections than standard students did. Furthermore, standard students recruited 

fewer units than flat students, but only when learning standard teacher tasks. 

6. Task complexity, which depends on teacher networks‟ I/O functions, was larger for 

standard networks than for flat networks having the same numbers of hidden units, 

as shown by larger compressed file size. Standard teacher networks may have been 

able to build more complex I/O functions due to the cascaded connection weights 

between hidden layers. This was reflected in our results showing that student 

networks took more computation to train and built larger networks when learning 

standard teacher functions than flat teacher functions. 

7. Task complexity also increased with the number of hidden units in the teacher 

network. Again, this was reflected in our results showing that student networks took 

more computation to train and built larger networks when learning teacher functions 

of more hidden units (ht). 

 

Our research examined a comprehensive set of six dependent measures. In contrast, 

other researchers employed fewer measures. For instance, Sjogaard (1991) considered a 

set of five measures similar to ours but without the computational cost of training. 

Adams and Waugh (1995), Littmann and Ritter (1993), and Lahnajarvi et al.(2002) all 

employed four measures, and finally Prechelt (1997) focused on two measures only, 

generalization ability and number of recruited units.  

4.1 Generalization 

The answer to our main experimental question is therefore that both flat and standard 

cascor generalise well on problems with wide ranges of complexity. This may help to 

settle a controversy in the literature on cascor. Previous research did not find a 

conclusive answer about generalization abilities of flat and standard cascor. Prechelt 

(1997) studied many variants of cascor. His flat variant of cascor was trained in input 

phase using error minimization and not covariance maximization, so a direct 

                                                 
‡
 Figure 1 presents examples of data sets generated by low and high complexity networks. 
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comparison with our results is difficult. In general, he found no differences in 

generalization on most of the real-life problems in the PROBEN1 test bed between the 

cascor variants he studied, which included differences in unit cascading (network 

connectivity). Furthermore, he found that when there were differences, the architecture 

that performed better depended on the problem.  

 

Although they did not use strictly flat cascor, the results of Phatak and Koren (1994) 

suggest that limiting network depth may improve generalization, but they note that no 

conclusion can be drawn based on their analysis.  

 

Other work supports contradictory conclusions: that flat cascor generalizes better than 

standard cascor (Sjogaard 1991) or that standard cascor generalizes better than flat 

cascor (Littman and Ritter 1993). Our experiment shows that generalization differences 

between flat and standard cascor may not exist with tasks that control bias. When such 

differences are found in real-world problems, they may be due to unknown 

particularities of the problems used that may favour one topology over another.  

 

Our findings differ from those of Adams and Waugh (1995). On a simple and smooth 

one-dimensional function approximation problem (1 / (1+x
2
)), they found that cascor 

generalized poorly because sigmoids in the network tended to saturate, thus producing 

uneven stairlike outputs. In contrast, our protocol reduces this problem by using cascor 

networks to generate training data, yielding problems whose level and type of 

nonlinearity are more compatible with cascor networks. Besides being six-dimensional, 

our networks‟ I/O functions are much more complex than the one used by Adams and 

Waugh, especially when the number of hidden units in the teacher network is large. 

4.2 Network size and training effort 

In this work, we also considered network size and training effort. We only found 

differences when task complexity was very high, higher than would normally be found 

in real-world problems (e.g. Prechelt 1994).  

 

When task complexity was high, flat networks trained more efficiently than standard 

students did, using fewer epochs on flat-teacher tasks, and with about 1.5 times less 

computational cost on both standard and flat tasks. For network size, standard cascor 

recruited fewer hidden units than flat cascor on standard teacher problems, but flat 

networks generally had about half as many connection weights as standard networks 

had. In sum, flat cascor may learn more efficiently because there are fewer connections 

to train. We further discuss implications of cascaded weights in section 4.4. 

 

In Prechelt‟s (1997) work, the average number of recruits for regression (i.e. function 

approximation) problems was 8 (min=0, max=92), which corresponds to problems of 

low complexity in our task. Some of the PROBEN1 tasks were actually linearly 

separable, something that cascor can readily detect by not needing any recruits. We 

found no differences in student network size and training efficiency when task 

complexity was that low. This is compatible with Prechelt‟s results on PROBEN1 real-

world problems where he found no performance difference on most of these tasks.  
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Furthermore, Prechelt used a non-standard threshold (alpha value) for detecting 

statistical significance. While we used α = 0.05 (and Bonferonni adjusted alpha levels 

when appropriate), Prechelt used a more liberal value of 0.1, so more results could turn 

out significant in his study simply due to random effects. In fact, some of his results are 

contradictory: different architectures perform significantly better on the same task 

depending on the version used, i.e. how data were split into train and test sets. Such 

contradictions suggest those results could be false positives. Therefore, we can suspect 

that there might be even fewer actual (practical) differences between variants of cascor 

on real-world problems than what Prechelt reported. 

 

Other factors may also interact with network topology to determine cascor 

performance. For example, Phatak and Koren‟s (1994) results suggest an interaction 

between connectivity and sample size: standard cascor may construct smaller networks 

that train faster than networks of restricted depth when there are many training patterns 

compared to the number of inputs and outputs. However, restricting cascor depth may 

result in an overall better performance when less data are available for a given number 

of inputs and outputs. Unfortunately, none of those differences were tested for 

statistical significance, so their conclusions are uncertain. Furthermore, because small 

and large sample size data were drawn from different problems, problem characteristics 

may be confounded with sample size. 

 

Our simulations, based on very large sample sizes, may support a conclusion opposite 

to Phatak and Koren‟s (1994) because flat cascor built networks with fewer connection 

weights that trained with less computational cost. With its strictly controlled bias and 

uniform tasks across conditions, our teacher-student method could be used to 

systematically investigate other issues, such as whether cascor connectivity interacts 

with the amount of training data.  

 

In short, the choice of cascor architecture might have little importance for many real-

world problems (see section 4.4 for discussion on the usefulness of cascading weights). 

However, by contrast with many real-world problems, our artificial task is complex 

enough to discriminate subtle architectural effects on performance. 

4.3 Differences with real-world problems 

In what ways does our student-teacher approximation task differ from real-world 

problems? First, as argued in the previous section, real-world problems tend to be 

simple and even sometimes linearly separable whereas the complexity of our task was 

manipulated from simple (compatible with real-world problems) to much more 

complex. 

 

Second, we were able to generate as much data as we needed because this is an 

artificial task. In contrast, real-world problems often have much less data because such 

data can be costly or difficult to obtain.  
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Third, we argued that if neural networks have more connections to train than there are 

training patterns available, they may be too powerful and overfit data. Consequently, 

neural networks trained on real-world tasks may generalize more poorly than neural 

networks trained on our problem because real-world problems often have little data 

available. 

 

Fourth, as described earlier, biases in our tasks are systematically controlled. Target 

values exactly represent the underlying process to approximate. In contrast, real-world 

data can suffer from unknown biases, have measurement errors, and other sources of 

noise.  

 

Finally, although our problem used 6 inputs, which is typical of many real-world tasks, 

some real-world problems have more inputs.  

4.4 Why use cascading weights? 

Our results raise questions about the utility of cascading weights, especially because we 

found no difference in generalization between standard and flat students. At lower, 

similar to real-life problem complexities, using cascaded weights did not do any harm 

in our experiments but neither did it provide any apparent benefit.  

 

At higher task complexity, our results suggest that cascading weights may result in 

larger networks that train less efficiently. Compared to flat student networks, standard 

networks have extra connections, in the form of cascaded weights between hidden 

units. If these extra, cascaded weights do some useful work, standard networks may 

well require fewer recruits than do flat networks as, for example, on the standard-

teacher tasks used here. However, some of those extra, cascaded weights seem not to be 

useful, resulting in fewer connection weights for flat networks than standard networks. 

Also, the extra connections in standard student networks increase training effort.  

 

Perhaps cascaded weights are more useful on problems in which later, more subtle 

representations can build on earlier and simpler representations. It is possible that the 

random functions generated by our teacher networks did not have this characteristic.  

 

Baluja and Fahlman (1994) proposed an elegant solution to the problem of having to 

choose whether or not to cascade weights. In their extension to cascor called 

Sibling/Descendant Cascade-Correlation (SDCC), the learning algorithm is modified so 

that the pool of recruits contains both units to be installed on the current top-most 

hidden layer (sibling units) and units to be installed on a new hidden layer (descendant 

units). This solves the problem of network depth by allowing sibling and descendant 

units to directly compete during each recruitment. Standard and flat cascor network 

architectures can be seen as two limit cases on a continuum of cascor architectures 

where the number of hidden units per hidden layer varies. In standard cascor, each unit 

is installed on a different layer, whereas in flat cascor all units are installed onto a 

single layer. Optimal solutions for specific tasks might require varying ratios of hidden 

units per hidden layers, so in most cases, the SDCC algorithm can be expected to 

recruit a mixture of unit types. SDCC also might be a more biologically plausible 
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model than flat or standard cascor. Indeed, its ability to generate networks of moderate 

depth might be better suited to modelling the limited layers of human cortex.  

 

As noted, Phatak and Koren (1994) proposed another method for limiting network 

depth, without completely flattening the network. The caveat of their method is that the 

number of hidden units per hidden layer has to be manually determined. Unfortunately, 

this undermines cascor‟s ability to automatically create network topology, and 

reintroduces designer expertise and trial-and-error experimentation into the process of 

network design. 

 

We suggest that further research is necessary to determine the utility of cascading 

weights in cascor networks. In this paper, we investigated two extreme connection 

schemes, one fully cascaded (standard) and another completely flat. Further research 

could explore more flexible connectivity schemes such as SDCC. In addition, pruning 

algorithms (e.g. Thivierge et al. 2003) could be used to remove surplus cascading 

weights, and result in size and training performances closer to that of flat cascor, while 

keeping the benefits of useful cascading weights in building powerful, cascaded feature 

detectors.  

4.5 Other follow-up experiments 

Another possible follow-up experiment would be to compare cascor with 

backpropagation neural network architectures. Getting a meaningful comparison with 

backpropagation is not straightforward because backpropagation architectures are 

designed by the experimenter, and therefore there are potentially unlimited numbers of 

architectures to compare with. A careful and systematic approach would be necessary 

to study performance comparison. Based on psychology simulations in which standard 

cascor or SDCC is compared to backpropagation on the same phenomena (Shultz 

2006), we expect that cascor would learn and generalize better than backpropagation.  

 

We found that the student-teacher task technique was powerful for comparing two 

variants of cascor. We believe this approach could be similarly useful for comparing 

machine learning algorithms and techniques, with bias and complexity controlled and 

large areas of problem space explored.  

 

In conclusion, the choice of standard or flat cascor does not seem to be crucial in 

practice because differences in network size and cost emerge only for high complexity 

tasks. Our results contradict the common criticism that standard cascor does not 

generalize well – we found no generalisation differences due to cascading weights at 

any level of complexity.  
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Figures and tables  
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Fig. 1. Examples of low and high complexity network I/O functions generated using standard and flat 

cascor teacher networks over the [-1,1]
2
 plane. Gray levels encode output values (z). 
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Fig. 2 Mean function complexity and SE bars measured using lossless compressed file size as a function 

of hidden unit count in the teacher network.  
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Table 1 – Calculation of number of connection weights  

 

Network type 

 

Number of weights after training 

Flat (inputs + 1) x (outputs + hidden) + hidden x outputs 

Standard 0.5 x hidden x (hidden + 1) + inputs x hidden + outputs x (inputs + hidden + 1) 

 

 

 

 

 

 

 
Table 2 - Calculation of  computational cost for training  

 

Network type 

 

Phase 

 

Weight changes 

Flat Input Candidates x (inputs + 1) x Epochs input phase 

Standard Input Candidates x ((inputs + 1) + (hidden – 1)) x Epochs output phase  

Flat and standard Output Outputs x ((inputs + 1) + hidden) x Epochs output phase 

 

 

 

 

 

 
Table 3 - Simulation Parameters Summary 

 

Parameter 

 

Value 

Inputs count 6 

Outputs count 1 

Input transfer function type Linear 

Hidden and output transfer function type Asigmoid (range [0,1]) 

Train and test sample size 21609 

Maximum hidden unit recruitments allowed 10 x number of hidden units in teacher network 

Weight range [-1,1] 
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Table 4 - Learning Parameters Summary (QuickProp) 

 

Parameter 

 

Output Phase 

 

Input Phase 

Learning rate 0.175 1.0 

Decay 0.0002 0.0 

Maximum growth factor 2.0 2.0 

Max epochs 100 100 

Change threshold 0.01 0.03 

Patience 8 8 

Score threshold 0.05 NA 

 

 

 

 

 

 

 
Table 5 – GLM Statistical significance of univariate main effects ( „-‟ when p > 0.05).  

Degrees of freedom for all F tests in this table are 1, 380. 

Factors 
Dependent measures 

Recruits Weights Epochs Cost Train error Test error 

Student - 
F = 15, 

p < 0.001 
- 

F = 15, 

p < 0.001 
- - 

ht 
F = 16, 

p < 0.001 

F = 16, 

p < 0.001 

F = 16, 

p < 0.001 

F = 15, 

p < 0.001 
- - 

Teacher 
F = 10, 

p = 0.002 

F = 9, 

p = 0.002 

F = 7, 

p = 0.010 

F = 5, 

p = 0.024 
- - 

ht x 

student 
- 

F = 2.1, 

p = 0.034 
- - - - 

Student x 

Teacher 

F = 6, 

p = 0.015 
- 

F = 4.0, 

p = 0.045 
- - - 

ht x 

teacher 
- - - - - - 

Student x 

ht x 

teacher 

- - - - - - 
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Fig. 3. Recruited hidden units in student networks as a function of the number of hidden units in the 

teacher network and type of student network. Training samples were generated by standard teacher 

networks.  
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Fig. 4. Recruited hidden units in student networks as a function of the number of hidden units in the 

teacher network and type of student network. Training samples were generated by flat teacher networks. 

Note that vertical scales are different in Fig. 3 and Fig. 4 . 
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Fig. 5. Mean number of connection weights and SE bars as a function of the number of hidden units in 

the teacher network and type of student network. Training samples were generated by standard teacher 

networks.  
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Fig. 6. Number of connection weights and SE bars as a function of the number of hidden units in the 

teacher network and type of student network. Training samples were generated by flat teacher networks.  
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Fig. 7. Number of epochs required for training and SE bars as a function of the number of hidden units in 

the teacher network and type of student network. Training samples were generated by standard teacher 

networks.  
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Fig. 8. Number of epochs required for training and SE bars as a function of the number of hidden units in 

the teacher network and type of student network. Training samples were generated by flat teacher 

networks.  
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Fig. 9. Computational cost for training and SE bars as a function of the number of hidden units in the 

teacher network and type of student network. Training samples were generated by standard teacher 

networks.  

 

 
 

 

 

Fig. 10. Computational cost for training and SE bars as a function of the number of hidden units in the 

teacher network and type of student network. Training samples were generated by flat teacher networks.  
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Fig. 11. Generalization (Error on test set after training) and SE bars as a function of the number of hidden 

units in the teacher network and type of student network. Training samples were generated by standard 

teacher networks.  
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Fig. 12. Generalization (Error on test set after training) and SE bars as a function of the number of hidden 

units in the teacher network and type of student network. Samples were generated by flat teacher 

networks.  

 


